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ABSTRACT

By considering the intensity, duration, and frequency of tropical cyclones, the power dissipation index

(PDI) and accumulated cyclone energy (ACE) are concise metrics routinely used to assess tropical storm

activity. This study focuses on the development of a hybrid statistical–dynamical seasonal forecasting system

for the North Atlantic Ocean’s PDI and ACE over the period 1982–2011. The statistical model uses only

tropical Atlantic and tropical mean sea surface temperatures (SSTs) to describe the variability exhibited by

the observational record, reflecting the role of both local and nonlocal effects on the genesis and development

of tropical cyclones in the North Atlantic basin. SSTs are predicted using a 10-member ensemble of the

Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1), an experimental dy-

namical seasonal-to-interannual prediction system. To assess prediction skill, a set of retrospective pre-

dictions is initialized for each month fromNovember to April, over the years 1981–2011. The skill assessment

indicates that it is possible to make skillful predictions of ACE and PDI starting from November of the

previous year: skillful predictions of the seasonally integrated North Atlantic tropical cyclone activity for

the coming season could be made even while the current one is still under way. Probabilistic predictions for

the 2012 North Atlantic tropical cyclone season are presented.

1. Introduction

The seasonal forecast of North Atlantic Ocean trop-

ical cyclone activity has been the subject of intense sci-

entific investigation (e.g., Jagger and Elsner 2010;

Klotzbach 2008) [consult Camargo et al. (2007) for a

review]. The capability of performing skillful forecasts

has important social and economic impacts, but also

represents a way of testing our understanding of the

physical processes responsible for the genesis, devel-

opment, and tracking of these events. Seasonal forecasts

for the North Atlantic basin date back almost three

decades, starting with the work by Gray (Gray 1984a,b).

Ever since the 1980s, different techniques have been

proposed and developed to forecast tropical cyclone

activity. Broadly speaking, one can consider two main

approaches to the seasonal forecast of tropical cyclones:

one in which dynamical models are used directly to

forecast the tropical cyclone activity (e.g., Vitart 2006;

Vitart et al. 2007; LaRow et al. 2010; Smith et al. 2010;

Zhao et al. 2010; Alessandri et al. 2011; Chen and Lin

2011), and one in which statistical models are developed

to connect the future state of North Atlantic tropical

cyclone activity to predictors based on the past and

present state of climate (e.g., Elsner and Jagger 2006;

Klotzbach and Gray 2009; Wang et al. 2009). As an in-

termediate approach in this broad classification, one can

consider hybrid statistical–dynamical models, in which

a statistical model, built either on observed relationships

(e.g., Kim and Webster 2010) or on the sensitivity of

tropical cyclones in high-resolution dynamical model

experiments covering a wide range of climate states

(e.g., Vecchi et al. 2011; hereafter V11), is applied to the

output of dynamical predictions of the future state of

climate.

Considerable effort has been placed on the seasonal

forecast of the number of tropical cyclones or hurricanes
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(e.g., Vitart 2006; Vitart et al. 2007; Klotzbach and Gray

2009; Wang et al. 2009; Kim and Webster 2010; LaRow

et al. 2010; Smith et al. 2010; Zhao et al. 2010; V11;

Alessandri et al. 2011; Chen and Lin 2011; Vecchi et al.

2013). In contrast, other tropical cyclone–related quan-

tities, such as the accumulated cyclone energy (ACE;

Camargo and Sobel 2005; Bell and Chelliah 2006) and

the power dissipation index (PDI; Emanuel 2005, 2007),

have received much less attention in the seasonal trop-

ical cyclone prediction literature (e.g., Saunders and Lea

2005; Camargo and Barnston 2009), even though dif-

ferent groups routinely issueACE forecasts in April and

May, such as the Met Office, Colorado State University,

Tropical Storm Risk, and the National Oceanic and

Atmospheric Administration (NOAA). These quanti-

ties present an integrated view of the tropical cyclone

season, by convolving storm duration, intensity, and

frequency. The difference between the two metrics is

that the wind speed is squared when computing ACE

and cubed when computing PDI. In this study, we focus

on the seasonal forecast of ACE and PDI. The seasonal

forecasting system proposed in this study is a statistical–

dynamical hybrid system, whose statistical component is

based and builds on the recent model by Villarini and

Vecchi (2012; henceforth VV12) (see section 2a for an

overview of the model).

The effort that has gone into building our under-

standing of seasonal forecasts of North Atlantic tropical

cyclones has led to multiple techniques showing skill

beginning from April for the North Atlantic tropical

cyclone season peaking in August–October (e.g., Elsner

and Jagger 2006; Vitart 2006; Vitart et al. 2007; Wang

et al. 2009; LaRow et al. 2010; Zhao et al. 2010; Chen and

Lin 2011). However, forecasts at longer leads remain

a considerable challenge. For example, the group at

Colorado State University led by Klotzbach and Gray

issued a note on 7 December 2011 stating: ‘‘We are dis-

continuing our early December quantitative hurricane

forecast for the next year and giving a more qualitative

discussion of the factors which will determine next

year’s Atlantic basin hurricane activity. Our early De-

cember Atlantic basin seasonal hurricane forecasts of

the last 20 years have not shown real-time forecast skill

even though the hindcast studies on which they were

based had considerable skill’’ (http://hurricane.atmos.

colostate.edu/forecasts/2011/dec2011/dec2011.pdf; last

accessed 20 June 2012). This statement seems also to

reflect the point of view expressed by the American

Meteorological Society (2000), that seasonal tropical

cyclone forecasts since the mid-1980s have shown

‘‘modest forecast skill’’ when issued in early June and

that ‘‘these forecasts have diminishing skill when issued

several months before the beginning of the season.’’

So, is skillful seasonal forecast of North Atlantic

tropical cyclone activity with a 6–9-month lead time not

achievable? V11 argued, based on a suite of retrospective

forecasts, that itmay be possible tomake skillful forecasts

of North Atlantic hurricane activity from November of

the previous year. In this manuscript, we show through

a series of retrospective forecasts that it is also possible

to perform skillful forecast of North Atlantic PDI and

ACE from as early as November of the previous year.

Taken together, these results suggest that it would be

possible to skillfully forecast the upcoming season even

as the current one is coming to an end.

The paper is organized in the following way. In section

2, we describe the data and provide an overview of the

statistical framework. Section 3 presents the results of

the analyses, and section 4 summarizes the main points

of the study and concludes the paper.

2. Data and methodology

a. Statistical model and covariates

In this study, we use the seasonally integrated North

Atlantic PDI and ACE values for the period 1949–2011.

The time series for these two indexes are computed

from the NOAA Atlantic basin hurricane database

(HURDAT) (e.g., Jarvinen et al. 1984; MacAdie et al.

2009). The database provides the location (latitude and

longitude), minimum pressure, and maximum wind

speed of the center of circulation for recorded tropical

storms from 1851 to the present. Similar to VV12, we

correct the pre-1970 wind speed values according to

Landsea (1993), use wind speed values only from trop-

ical and subtropical nondepression (maximum winds .
17 m s21) stages of the storms, and focus on the 1949–

2011 period to limit the impact of data inhomogeneities.

Let us indicate withY the seasonally integrated North

Atlantic PDI or ACE (PDI is normalized by a factor

1011 and ACE by a factor 109). Similar to VV12, we can

model Y using a gamma distribution

fY(y jm,s)5
1

(s2m)1/s
2

y2111/s2

exp[2y/(s2m)]

G(1/s2)
, (1)

in which the location parameter m is a linear function of

tropical Atlantic (SSTAtl) and tropical mean (SSTTrop) sea

surface temperatures (via a logarithmic link function):

m5 log(b01bAtlSSTAtl1bTropSSTTrop) , (2)

and s is constant. The mean is equal to m, while the

variance is equal to m2s2.

The selection of these two predictors is supported

by physical considerations and results from dynamical
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numerical and statistical models (e.g., Shen et al. 2000;

Sobel et al. 2002; Tang and Neelin 2004; Latif et al. 2007;

Vecchi and Soden 2007; Vecchi et al. 2008; Ramsay and

Sobel 2011; Villarini et al. 2010, 2011, 2012; V11; VV12).

The SST anomalies are computed with respect to the

period 1982–2005. The SSTAtl anomalies are computed

over the tropical cyclonemain development region (108–
258N and 808–208W), while SSTTrop are computed with

respect to the tropical belt 308S–308N. We use NOAA’s

Extended Reconstructed SST dataset, version 3b

(ERSSTv3b; Smith et al. 2008), averaged over the pe-

riod June–November as reference. As shown in Fig. 1

and described in details in VV12, this parsimonious

model is able to describe very well the interannual and

multidecadal variability exhibited by the observational

record.

b. Seasonal forecasts

Similar to V11, we use the forecasts of June–

November SSTAtl and SSTTrop obtained from theNOAA–

Geophysical Fluid Dynamics Laboratory (GFDL)

experimental seasonal-to-interannual (S–I) prediction

system, which is built on the GFDL Climate Model,

version 2.1 (CM2.1; Delworth et al. 2006), and initialized

using the coupled ensemble Kalman filter scheme of

Zhang et al. (2007). The GFDL CM2.1 forecasts consist

of a set of retrospective predictions initialized over the

period November 1981–February 2012, each with a

10-member ensemble initialized from the first day of

every month with an integration of 12 months.

The model presented in the previous subsection

(gamma distribution with m that is a function of the two

predictors and constant s) provides the structure for our

seasonal forecasting system. The seasonal forecasts are

obtained computing 10 values of m from Eq. (2) (one per

ensemblemember) and then use aMonteCarlo approach

to generate the PDI and ACE forecast distributions.

For the retrospective forecasts, the values of the co-

efficients b0, bAtl, and bTrop [Eq. (2)], and s, however,

are not constant over the entire period, but are recom-

puted from year to year as new information becomes

available over the forecast period 1982–2011. For in-

stance, the seasonal forecast for 1982 is based on SST

forecasts for 1982 and the model’s parameters are esti-

mated using PDI and ACE data as well as ERSSTv3b

data from 1949 to 1980. Similarly, the seasonal forecast

FIG. 1. Results of the statistical modeling of (top) ACE and (bottom) PDI over the period

1949–2011. These results are based on fitting the observational record [corrected according to

Landsea (1993); black circles] using a gamma distribution in which the location parameter m is

a linear function of SSTAtl and SSTTrop (via a logarithmic link function) and constant scale

parameter s. The SST data are based on ERSSTv3b. The white line represents the median

(50th percentile); the dark gray area represents the region between the 5th and 95th percentiles,

while the light gray area represents the region between the 25th and 75th percentiles.

1 JUNE 2013 V I LLAR IN I AND VECCH I 3633



for 1983 is based on SST forecasts for 1983 and the

model’s parameters are estimated using PDI, ACE, and

ERSSTv3b from 1949 to 1981. We repeat this for every

year from 1982 to 2011. We do not use, for instance, the

coefficients estimated including the information for 1981

to forecast the 1982 activity because the final ‘‘best

track’’ values (including postseason adjustments) for

the 1981 season would not have been available in late

1981 and early 1982. As a sensitivity test, we also per-

form retrospective forecasts training the statistical

model on the entire data record—although this is not

a true retrospective forecast, as it requires ‘‘future’’ in-

formation (i.e., the full 1949–2011 record was not avail-

able until 2012).

Examination of the time series of the model’s co-

efficients highlights some interesting features (Fig. 2).

We can clearly see twomain regimes, pre-1995 and post-

1995, in both PDI and ACE. Around 1995 there is

an abrupt shift in the time series of the coefficients, with

the differences between the coefficient for SSTAtl and

SSTTrop becoming larger, pointing to a heightened trop-

ical cyclone activity. Not only do we observe an increase

in PDI and ACE magnitude as a consequence of the

changes in the beta coefficients, but we also have a

similar abrupt change in s, indicating an increase in

variability. The 1995 changepoint is coincident with the

abrupt change in tropical cyclone activity (e.g., Elsner

et al. 2004; Li and Lund 2012), which was connected

to changes in the state of the northern Atlantic Ocean

that had wide-ranging impacts (e.g., Knight et al. 2005;

Sutton and Hodson 2005; Zhang and Delworth 2006).

Predicting these abrupt shifts in the future will be im-

portant to improving our seasonal and long-lead fore-

cast of North Atlantic tropical cyclone activity (Smith

et al. 2010; Vecchi et al. 2013). It appears that this abrupt

shift revealed statistical relationships between SST and

PDI/ACE that the shorter record did not. This shift in

the character of the statistical model highlights the

difficulties inherent in training models on finite data-

sets: as the record lengthened, the underlying re-

lationships between the predictors and predictand were

refined. At the present time, it is unclear what physical

mechanisms were behind this abrupt change in the sta-

tistical model parameters, but the 1994/95 climate shift in

the Atlantic revealed a stronger role for Atlantic SSTs in

controlling tropical cyclone activity than one would have

inferred from prior data. A question that, unfortunately,

we cannot answer at this stage is whether the fit of PDI

FIG. 2. Time series of the model coefficients for the location parameter m [Eq. (2)] and scale parameter s over the

period 1980–2011 for ACE (black line) and PDI (gray line).
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and ACE to the SST predictors has converged, or if

future shifts in the climate system will result in further

refinement of the model.

For the seasonal forecasts initialized in February,

March, and April, we consider an additional model

configuration. It may be reasonable to expect that by

February the best-track PDI and ACE values from the

season that has just ended would be available, and one

could use these values to compute the most recent set of

model coefficients. Therefore, for instance, if one wanted

to forecast the PDI and ACE values for 1982, one could

use the coefficients estimated using all the information

up to 1981, instead of being restricted to the 1949–80

period. We will show that, by adding this additional

piece of information, the forecasting PDI andACE from

February, March, and April nominally increases.

The approach we follow is similar to the ‘‘retroactive

validation’’ discussed inMason andBaddour (2007) (see

also Villarini and Serinaldi 2012), and differs from the

common ‘‘calibration–validation approach.’’ In our case,

the forecast method over the validation period is het-

erogeneous because the statistical model from which

these values are obtained is not fitted over a fixed period,

but over a changing one. This approach, however, re-

sults fromusing the additional information that becomes

available from year to year, and has been already used in

other studies and disciplines (e.g., Weron 2006; Villarini

and Serinaldi 2012).

We use the median as our best estimate because of its

robustness and the skewness in the ACE and PDI dis-

tribution, and the forecast accuracy is quantified using

four metrics: the Pearson correlation coefficient, the

Spearman correlation coefficient, the root-mean-squared

error (RMSE), and themean absolute error (MAE) (e.g.,

Wilks 2006; Hyndman and Koehler 2006). The first two

metrics quantify the degree of agreement between

observations and forecasts. The Pearson correlation

coefficient quantifies the degree of linear dependence

between observations and forecasts. If we indicate the

observations with O and the forecasts with F, it is com-

puted as the covariance betweenO and F normalized by

the product of the standard deviation of O and F. The

Spearman correlation coefficient can be considered the

nonparametric counterpart of the Pearson correlation

coefficient and is equivalent to computing the Pearson

correlation coefficient on the ranked observations and

forecasts. Therefore, the Spearman correlation coef-

ficient is less sensitive to outliers and quantifies the degree

of monotonic dependence between O and F. The use of

MAE and RMSE aims at quantifying the discrepancies

between observations and forecasts, with the latter pe-

nalizingmore the large discrepancies (e.g., Hyndman and

Koehler 2006).

Evaluation of the probabilistic forecast is based on the

method presented in Laio and Tamea (2007) for the

verification of probabilistic forecasts for continuous

predictands. Given an observed value xi, we can com-

pute the probability zi 5 Pi(xi), with the distribution of

zi that follows a standard uniform distribution and the

zi that should be independent for a correct probabilistic

forecast. We examine the validity of the independence

assumption by computing the autocorrelation functions

and testing whether autocorrelation values are statisti-

cally different from 0. We assess the goodness-of-fit of

the standard uniform distribution using probability

plots, in which we plot zi against their empirical cumu-

lative distribution function Ri/n, where Ri is the rank of

the ith observation and n is the sample size. If the data

are approximately uniform, the points (zi, Ri/n) are lo-

cated along the x 5 y line. Because of sampling un-

certainties from the limited sample size, we also include

the Kolmogorov 5% significance bands. These graphical

results also provide information about possible reasons

for the deviation from uniformity, in case the uniformity

test is not passed. Consult Laio and Tamea (2007) for

more details.

3. Results

We use the parsimonious statistical model discussed

in the previous section to perform a retrospective fore-

cast for every year from 1982 to 2011. Figures 3 and 4

show the results for ACE and PDI for different ini-

tialization months (description of the retrospective

forecast skill for the two SST predictors is presented

in V11). The models we have developed are able to

describe the interannual variability exhibited by the

data as early as November, indicating that it is possible

to make skillful forecasts of North Atlantic PDI and

ACE as early as November of the previous year. The

November forecast (7-month lead time for a tropical

cyclone season starting in July) is able to capture the

observed alternation of quieter and more active pe-

riods. As the lead time decreases, the median tends to

follow more closely the observations, and the forecast

distribution tends to better describe the data. The

agreement between median forecasts and observations

tends to increase going from November to January

and February, likely because of an improvement in the

SST forecast (V11). On the other hand, the March and

April forecasts tend to be worse than the previous

ones, with decreased interannual variability and a

poorer agreement between median forecast and ob-

servations. These statements are valid for both ACE

and PDI forecasts. This worsening in the seasonal

forecast performance when initialized in March and
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April was also noted for hurricane frequency in V11.

They found that the correlation between observation

and forecast of tropical Atlantic SST using GFDL

CM2.1 peaked in January and progressively decreased

in February, March, and April. The correlation be-

tween observed and forecast tropical mean SST ex-

hibited a similar pattern, with the worst agreement in

the April forecasts.

FIG. 3. Seasonal forecast ofACE initialized fromNovember (of the year prior to the one to forecast) toApril (same

year as the one to forecast). The black circles represent the observations. The white line represents the median (50th

percentile); the dark gray area represents the region between the 5th and 95th percentiles, while the light gray area

represents the region between the 25th and 75th percentiles. The hatched regions represent the forecast period.
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Figure 5 summarizes the results regarding the accu-

racy of the seasonal forecast of ACE (left panels) and

PDI (right panels) using the four metrics described in

the previous section. Consistent with the visual assess-

ment of Figs. 3 and 4, we observe an increase in perfor-

mance from November to January and February, and

then a worsening inMarch andApril. TheMAE forACE

decreases from 2.83 109 to 2.73 109 m2 s21 to increase

again to about 3.0 3 109 m2 s21 in April. The MAE for

PDI shows a similar pattern, with values of about 1.3 3
1011 m3 s22 in November and December, decreasing to

about 1.23 3 1011 m3 s22 in January and February, and

FIG. 4. As in Fig. 3, but for the PDI.
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FIG. 5. Summary of the accuracy of the seasonal forecast of (left) ACE and (right) PDI for different initialization

months. The metrics used are MAE, RMSE, and the Pearson and Spearman correlation coefficients. The gray

horizontal line (most complete model) represents the results obtained by using the median from Fig. 1 as reference

value. The black lines with black circles represent the results using the medians from Figs. 3 and 4. The black lines

with black squares represent the results for the model configuration using the coefficients of the statistical model

estimated using all the information available for that year, and the SST forecast for the upcoming year. The lagged

5-yr average (dashed black line) is used as measure of ‘‘null skill’’ as recommended in World Meteorological

Organization (2008).
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increasing again reaching 1.43 1011 m3 s22 in April. The

RMSE values are larger than the corresponding MAE

values because of the increased influence of discrep-

ancies at the extremes, and the skewed distribution of

ACE and PDI. Both measures of error are smaller than

the observed standard deviations of 3.8 3 109 m2 s21

and 1.8 3 1011 m3 s22 for ACE and PDI, respectively.

The results obtained by using the correlation coeffi-

cients indicate that this experimental seasonal forecasting

system was able to reproduce well the observational

record. The Pearson correlation coefficient is about 0.5

for forecasts initialized in November and December,

peaking at 0.6 in January and February, and decreases

down to 0.5 in March and April. The results are similar

for both PDI and ACE. The results obtained by using

the Spearman correlation coefficient are less depen-

dent on the initialization month. The values for ACE

are on the order of 0.55, with the exception of the

January forecast, which peaks at about 0.65. The results

for PDI are slightly larger, with values on the order of 0.58

for all the initialization months, except for January,

in which the correlation coefficient peaks at 0.66. The

slight differences between Pearson and Spearman

correlation coefficients can be because of the fact that

the latter works on ranks rather than on the numerical

values of the forecasts and observations. As shown

in Fig. 5, the accuracy of these forecasts represent

an improvement over the lagged 5-yr ACE and PDI

averages, which are used as measure of ‘‘null skill’’ as

recommended in World Meteorological Organization

(2008).

We evaluate the probabilistic forecasts using the ap-

proach described in Laio and Tamea (2007). The zi do

not exhibit statistically significant autocorrelation based

on the autocorrelation functions for any forecast months.

We examine the goodness-of-fit of the standard uniform

distribution using probability plots (Fig. 6). The points

are generally within the 5% confidence intervals point-

ing to a correct probabilistic forecast, with a slight ten-

dency toward underprediction, with points lying below

the x 5 y line.

As mentioned before, we have also examined the

improvement in the forecasts initialized in February to

April associated with the use of the most recent PDI,

ACE, and SST values. Overall, the February forecasts

are nowmore accurate than the January ones, exhibiting

the smallest MAE and RMSE values and the largest

Pearson correlation coefficients (the largest Spearman

correlation coefficients are still in January). The use of

this additional information results in an overall im-

provement in the March and April forecasts as well.

We have also used the seasonal forecasting system

presented in this study to make forecasts for the

upcoming 2012 tropical cyclone season (Fig. 7, Table 1).

Neither the November nor December 2011 forecasts

suggested that the 2012 season will be particularly ac-

tive. According to the ACE forecast, there is an 11.4%

probability of having a season exceeding the 1980–2010

mean based on the November forecast, and a slightly

larger probability according to the December forecast

(17.7%). The results for PDI are similar, with a proba-

bility of 10.3% (16.2%) of having a season more active

than the 1980–2010 mean based on the November

(December) forecasts. On the other hand, based on the

forecasts initialized in January and February, the 2012

season is forecast to be about as active as the 1980–2010

mean. The probability of having a season more active

than the mean 1995–2010 period is smaller than for the

1980–2010 period, but still increasingly larger going

from the November to the February forecasts (Table 1).

The increase in forecast activity with reduced lead time

is because of the forecast of SST, with a larger forecast

warming of the Atlantic Ocean relative to the rest of the

tropics. Based on the results in Fig. 5, the retrospective

1982–2011 January and February forecasts were gener-

ally more accurate than the November–December

ones—but the differences are not statistically significant.

It will be interesting to check at the end of the 2012 season

how well this forecast system performed.

4. Conclusions

In this study, we have proposed and developed a hy-

brid statistical–dynamical forecasting system of North

Atlantic tropical cyclone activity, targeting the season-

ally integrated PDI and ACE values. Predictions of

these two indices complement forecasts of the number

of storms by also providing information on intensity and

duration. Our system builds on VV12 and describes the

PDI and ACE time series with a gamma distribution, in

which the logarithm of the location parameter depends

linearly on tropical Atlantic and tropical mean SSTs,

while the scale parameter is constant. We use the GFDL

CM2.1 experimental seasonal-to-interannual forecast

system (Delworth et al. 2006; Zhang et al. 2007; V11) to

obtain the input predictors as early as November of the

year prior to the season we want to forecast. We used

four different metrics (RMSE, MAE, and the Pearson

and Spearman correlation coefficients) to assess the

forecast accuracy, and used the approach described in

Laio and Tamea (2007) to evaluate the probabilistic

forecasts.

By performing retroactive validation (Mason and

Baddour 2007), we showed that it is possible to make

skillful forecasts of PDI and ACE starting from

November of the previous year. This means that there is
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potential for skillful forecasts of the seasonally in-

tegrated North Atlantic tropical cyclone activity for the

coming season while the current one is still under way.

Moreover, it may be possible to use this forecasting

system for the forecast of Artic sea ice, building on the

recent link found between PDI and sea ice cover in the

Artic (Scoccimarro et al. 2012).

Using this system, we have provided ACE and PDI

forecasts for the 2012 season. Based on our results, the

2012 tropical cyclone season is not forecast to be

particularly active, even though the January and

February 2012 forecasts indicate that it will be less in-

active than what the November and December 2011

forecasts suggested.

FIG. 6. Probability plot representation of the probabilistic forecast of ACE (gray circles) and PDI (black circles). The

light gray solid lines represent the Kolmogorov 5% significance bands.
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There are several different possible venues to improve

upon this system. In this study, we focused on the SST

forecasts from the GFDL CM2.1. In the future, how-

ever, it would be possible to include SST forecasts from

research centers around the world that already routinely

perform SST forecasts. Based on the results of V11, it is

likely that a multimodel ensemble approach would lead

to an increase in the long-lead skill. Another venue for

future research is the application of this statistical

model to decadal projections of North Atlantic tropical

cyclone activity. Smith et al. (2010) and Vecchi et al.

(2013) showed that there is potential skill in multiyear

predictions of tropical cyclone frequency. Experiments

are under way to assess the feasibility of multiyear-to-

decadal forecasts of PDI and ACE using the GFDL

CM2.1 experimental decadal forecast system (A. Rosati

et al. 2012, unpublished manuscript; Yang et al. 2013;

Vecchi et al. 2013) and the suite of phase 5 of the Coupled

Model Intercomparison Project (CMIP5) initialized

decadal forecast experiments (Taylor et al. 2012). The

results of this study together with those in Smith et al.

(2010) and Vecchi et al. (2013) indicate that there is

hope in achieving skillful multiyear predictions of ACE

and PDI by considering both radiatively forced and

internal components of multiyear tropical cyclone ac-

tivity changes.
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